http 连接建立和处理
接收 http 请求并执行的过程
go func() {
if err := s.ListenAndServe(); err != nil && err != http.ErrServerClosed {
log.Fatalf("s.ListenAndServe err: %v", err)
}
}()
前面提到, 在路由引初始化完成后,注册对应的路由和 handler,接下来在 main 函数中 http.Server 就会监听指定的端口,我们来看下http.Server 是如何接收请求并执行对应的处理函数的
httpServer 会调用 Serve(l net.Listener 函数,这个函数主要做了以下几件事情
- 在一个循环里面不断监听套接字是否有链接请求上来,如果有的话,创建一个新的连接对象
- 这个连接对象中有,有两个成员,一个是套接字对象(实现了conn接口),一个是指向service对象的指针
- 最后一行,通过启动一个新的协程来处理连接事务,并对外提供服务
func (srv *Server) newConn(rwc net.Conn) *conn {
c := &conn{
server: srv,
rwc: rwc,
}
if debugServerConnections {
c.rwc = newLoggingConn("server", c.rwc)
}
return c
}
func (srv *Server) Serve(l net.Listener) error {
if fn := testHookServerServe; fn != nil {
fn(srv, l) // call hook with unwrapped listener
}
origListener := l
l = &onceCloseListener{Listener: l}
defer l.Close()
if err := srv.setupHTTP2_Serve(); err != nil {
return err
}
if !srv.trackListener(&l, true) {
return ErrServerClosed
}
defer srv.trackListener(&l, false)
baseCtx := context.Background()
if srv.BaseContext != nil {
baseCtx = srv.BaseContext(origListener)
if baseCtx == nil {
panic("BaseContext returned a nil context")
}
}
var tempDelay time.Duration // how long to sleep on accept failure
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, err := l.Accept()
if err != nil {
if srv.shuttingDown() {
return ErrServerClosed
}
if ne, ok := err.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
time.Sleep(tempDelay)
continue
}
return err
}
connCtx := ctx
if cc := srv.ConnContext; cc != nil {
connCtx = cc(connCtx, rw)
if connCtx == nil {
panic("ConnContext returned nil")
}
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew, runHooks) // before Serve can return
go c.serve(connCtx)
}
}
继续往下看,我们看每个 accept 的连接是如何对外提供服务的
- 主要的读取 socket 数据流 并将其解析成h ttp 协议格式请求的逻辑在 for 循环中
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
var inFlightResponse *response
// 忽略一些代码
// 处理TLS
// ...
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
// http 情趣解析重头戏
for {
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive, runHooks)
}
if err != nil {
const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
switch {
case err == errTooLarge:
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
const publicErr = "431 Request Header Fields Too Large"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
c.closeWriteAndWait()
return
case isUnsupportedTEError(err):
// Respond as per RFC 7230 Section 3.3.1 which says,
// A server that receives a request message with a
// transfer coding it does not understand SHOULD
// respond with 501 (Unimplemented).
code := StatusNotImplemented
// We purposefully aren't echoing back the transfer-encoding's value,
// so as to mitigate the risk of cross side scripting by an attacker.
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders)
return
case isCommonNetReadError(err):
return // don't reply
default:
if v, ok := err.(statusError); ok {
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text)
return
}
publicErr := "400 Bad Request"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
return
}
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
w.canWriteContinue.Store(true)
}
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
return
}
c.curReq.Store(w)
if requestBodyRemains(req.Body) {
registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
} else {
w.conn.r.startBackgroundRead()
}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
inFlightResponse = w
serverHandler{c.server}.ServeHTTP(w, w.req)
inFlightResponse = nil
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
c.rwc.SetWriteDeadline(time.Time{})
if !w.shouldReuseConnection() {
if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
c.closeWriteAndWait()
}
return
}
c.setState(c.rwc, StateIdle, runHooks)
c.curReq.Store(nil)
if !w.conn.server.doKeepAlives() {
// We're in shutdown mode. We might've replied
// to the user without "Connection: close" and
// they might think they can send another
// request, but such is life with HTTP/1.1.
return
}
if d := c.server.idleTimeout(); d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
} else {
c.rwc.SetReadDeadline(time.Time{})
}
// Wait for the connection to become readable again before trying to
// read the next request. This prevents a ReadHeaderTimeout or
// ReadTimeout from starting until the first bytes of the next request
// have been received.
if _, err := c.bufr.Peek(4); err != nil {
return
}
c.rwc.SetReadDeadline(time.Time{})
}
}
深入看下上面的 for 循环中 *w, err := c.readRequest(ctx)* 是怎么将数据路按 http 协议解析出来的
- 读取socket 的数据流,放到内存的缓冲区中
*readRequest(b *bufio.Reader)*逐行读取缓冲区,逐步解析请求第一行,请求头(读取请求头通过***ReadMIMEHeader() 函数***),- 独到请求头之后,根据请求的方法,请求头中的参数,再来觉得是否需要读取请求体,如果有请求体,根据请求头部字段创建body的读取器reader(r**
*eadTransfer(msg any, r *bufio.Reader) (err error)判断是否需要分块读取数据***) - 创建response 对象 w, 并且将请求头上下文作为 response 对象的一个成员,因为在实际业务需求中经常有response数据需要使用到request 上下文的情况
// 解析 http 请求
func readRequest(b *bufio.Reader) (req *Request, err error) {
tp := newTextprotoReader(b)
defer putTextprotoReader(tp)
req = new(Request)
// First line: GET /index.html HTTP/1.0
var s string
if s, err = tp.ReadLine(); err != nil {
return nil, err
}
defer func() {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
}()
// 读取请求第一行
req.Method, req.RequestURI, req.Proto, ok = parseRequestLine(s)
// 读取请求头
// Subsequent lines: Key: value.
mimeHeader, err := tp.ReadMIMEHeader()
if err != nil {
return nil, err
}
req.Header = Header(mimeHeader)
if len(req.Header["Host"]) > 1 {
return nil, fmt.Errorf("too many Host headers")
}
// RFC 7230, section 5.3: Must treat
// GET /index.html HTTP/1.1
// Host: www.google.com
// and
// GET http://www.google.com/index.html HTTP/1.1
// Host: doesntmatter
// the same. In the second case, any Host line is ignored.
req.Host = req.URL.Host
if req.Host == "" {
req.Host = req.Header.get("Host")
}
fixPragmaCacheControl(req.Header)
req.Close = shouldClose(req.ProtoMajor, req.ProtoMinor, req.Header, false)
// 检查是否需要分块读取
err = readTransfer(req, b)
if err != nil {
return nil, err
}
if req.isH2Upgrade() {
// Because it's neither chunked, nor declared:
req.ContentLength = -1
// We want to give handlers a chance to hijack the
// connection, but we need to prevent the Server from
// dealing with the connection further if it's not
// hijacked. Set Close to ensure that:
req.Close = true
}
return req, nil
}
// Read next request from connection.
func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
// 一些错误处理逻辑
// ...
// 读取报文,按 http 协议解析 ——--> 跳转到上面的那个函数
req, err := readRequest(c.bufr)
if err != nil {
if c.r.hitReadLimit() {
return nil, errTooLarge
}
return nil, err
}
if !http1ServerSupportsRequest(req) {
return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"}
}
c.lastMethod = req.Method
c.r.setInfiniteReadLimit()
hosts, haveHost := req.Header["Host"]
isH2Upgrade := req.isH2Upgrade()
if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
return nil, badRequestError("missing required Host header")
}
if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) {
return nil, badRequestError("malformed Host header")
}
for k, vv := range req.Header {
if !httpguts.ValidHeaderFieldName(k) {
return nil, badRequestError("invalid header name")
}
for _, v := range vv {
if !httpguts.ValidHeaderFieldValue(v) {
return nil, badRequestError("invalid header value")
}
}
}
delete(req.Header, "Host")
ctx, cancelCtx := context.WithCancel(ctx)
req.ctx = ctx
req.RemoteAddr = c.remoteAddr
req.TLS = c.tlsState
// 将 req.Body 接口实例化为一个对象,由用户来手动读取 htto请求体
if body, ok := req.Body.(*body); ok {
body.doEarlyClose = true
}
// Adjust the read deadline if necessary.
if !hdrDeadline.Equal(wholeReqDeadline) {
c.rwc.SetReadDeadline(wholeReqDeadline)
}
w = &response{
conn: c,
cancelCtx: cancelCtx,
req: req,
reqBody: req.Body,
handlerHeader: make(Header),
contentLength: -1,
closeNotifyCh: make(chan bool, 1),
// We populate these ahead of time so we're not
// reading from req.Header after their Handler starts
// and maybe mutates it (Issue 14940)
wants10KeepAlive: req.wantsHttp10KeepAlive(),
wantsClose: req.wantsClose(),
}
if isH2Upgrade {
w.closeAfterReply = true
}
w.cw.res = w
w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
return w, nil
}
在HTTP协议中,请求头和请求体是通过一个空行分隔的。请求头包含了客户端发送给服务器的一些元数据信息,例如请求方法、地址、协议版本、请求头字段等。而请求体则一般用于传输一些数据,例如表单数据、JSON数据等。
为了保证灵活性和可扩展性,http框架通常只负责解析和提供请求头的相关信息,至于请求体的数据需要根据具体的业务需求来处理。由于请求体的内容格式可能是多样的,http框架无法事先预知如何解析请求体数据。因此,需要程序手动读取请求体,并根据请求头中的Content-Type字段判断请求体的数据格式,然后进行相应的解析和处理。
以下是根据请求或者响应头部数据,判断是否需要分块读取的逻辑
// msg is *Request or *Response.
func readTransfer(msg any, r *bufio.Reader) (err error) {
t := &transferReader{RequestMethod: "GET"}
// Unify input
isResponse := false
switch rr := msg.(type) {
case *Response:
t.Header = rr.Header
t.StatusCode = rr.StatusCode
t.ProtoMajor = rr.ProtoMajor
t.ProtoMinor = rr.ProtoMinor
t.Close = shouldClose(t.ProtoMajor, t.ProtoMinor, t.Header, true)
isResponse = true
if rr.Request != nil {
t.RequestMethod = rr.Request.Method
}
case *Request:
t.Header = rr.Header
t.RequestMethod = rr.Method
t.ProtoMajor = rr.ProtoMajor
t.ProtoMinor = rr.ProtoMinor
// Transfer semantics for Requests are exactly like those for
// Responses with status code 200, responding to a GET method
t.StatusCode = 200
t.Close = rr.Close
default:
panic("unexpected type")
}
// Default to HTTP/1.1
if t.ProtoMajor == 0 && t.ProtoMinor == 0 {
t.ProtoMajor, t.ProtoMinor = 1, 1
}
// Transfer-Encoding: chunked, and overriding Content-Length.
if err := t.parseTransferEncoding(); err != nil {
return err
}
realLength, err := fixLength(isResponse, t.StatusCode, t.RequestMethod, t.Header, t.Chunked)
if err != nil {
return err
}
if isResponse && t.RequestMethod == "HEAD" {
if n, err := parseContentLength(t.Header.get("Content-Length")); err != nil {
return err
} else {
t.ContentLength = n
}
} else {
t.ContentLength = realLength
}
// Trailer
t.Trailer, err = fixTrailer(t.Header, t.Chunked)
if err != nil {
return err
}
// If there is no Content-Length or chunked Transfer-Encoding on a *Response
// and the status is not 1xx, 204 or 304, then the body is unbounded.
// See RFC 7230, section 3.3.
switch msg.(type) {
case *Response:
if realLength == -1 && !t.Chunked && bodyAllowedForStatus(t.StatusCode) {
// Unbounded body.
t.Close = true
}
}
// Prepare body reader. ContentLength < 0 means chunked encoding
// or close connection when finished, since multipart is not supported yet
switch {
case t.Chunked:
if isResponse && (noResponseBodyExpected(t.RequestMethod) || !bodyAllowedForStatus(t.StatusCode)) {
t.Body = NoBody
} else {
t.Body = &body{src: internal.NewChunkedReader(r), hdr: msg, r: r, closing: t.Close}
}
case realLength == 0:
t.Body = NoBody
case realLength > 0:
t.Body = &body{src: io.LimitReader(r, realLength), closing: t.Close}
default:
// realLength < 0, i.e. "Content-Length" not mentioned in header
if t.Close {
// Close semantics (i.e. HTTP/1.0)
t.Body = &body{src: r, closing: t.Close}
} else {
// Persistent connection (i.e. HTTP/1.1)
t.Body = NoBody
}
}
// Unify output
switch rr := msg.(type) {
case *Request:
rr.Body = t.Body
rr.ContentLength = t.ContentLength
if t.Chunked {
rr.TransferEncoding = []string{"chunked"}
}
rr.Close = t.Close
rr.Trailer = t.Trailer
case *Response:
rr.Body = t.Body
rr.ContentLength = t.ContentLength
if t.Chunked {
rr.TransferEncoding = []string{"chunked"}
}
rr.Close = t.Close
rr.Trailer = t.Trailer
}
return nil
}
好现在让我们返回到之前的for循环,,这个是之前监听套件字上获取一个然后开启的一个协程,携程里的重头戏是for循环。
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
var inFlightResponse *response
// 忽略一些代码
// 处理TLS
// ...
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
// http 情趣解析重头戏
for {
w, err := c.readRequest(ctx)
// 删去了一些错误处理,让代码主逻辑体现出来
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
inFlightResponse = w
// 这里调用的 ServerHTTP 函数其实就是 我们在 main 函数中传入的 handler (其实也就是路由殷勤)
router := routers.NewRouter()
// s := &http.Server{
// Addr: ":" + global.ServerSetting.HttpPort,
// Handler: router,
// ReadTimeout: global.ServerSetting.ReadTimeout,
// WriteTimeout: global.ServerSetting.WriteTimeout,
// MaxHeaderBytes: 1 << 20,
// }
serverHandler{c.server}.ServeHTTP(w, w.req)
// 做一些收尾工作,例如心跳机制等
// .....
}
}
接下来我们来单独分析下 serverHandler{c.server}.ServeHTTP(w, w.req) 是如何工作的
- 前半部分***
serverHandler{c.server}.*** 其实是创建了一个临时对象,这个对象有个成员是一个指向Server 的指针,事实上,c.server 就是我们在 main 函数中初始化的那个 server 对象,在监听套接字 accept 到新连接时,会创建一个 conn 连接对象,每个 conn 对象都会获取main 函数中建立的 server 的指针作为自己的一个数据成员,所以这个c.server其实就是我们main 函数中穿件的 server - 后半部分,这个临时对象调用一个叫做
ServeHTTP(w, w.req)的方法,传入参数为我们上面解析出来的 request 和 response
type serverHandler struct {
srv *Server
}
type conn struct {
// server is the server on which the connection arrived.
// Immutable; never nil.
server *Server
// cancelCtx cancels the connection-level context.
cancelCtx context.CancelFunc
// rwc is the underlying network connection.
// This is never wrapped by other types and is the value given out
// to CloseNotifier callers. It is usually of type *net.TCPConn or
// *tls.Conn.
rwc net.Conn
// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
// inside the Listener's Accept goroutine, as some implementations block.
// It is populated immediately inside the (*conn).serve goroutine.
// This is the value of a Handler's (*Request).RemoteAddr.
remoteAddr string
// tlsState is the TLS connection state when using TLS.
// nil means not TLS.
tlsState *tls.ConnectionState
// werr is set to the first write error to rwc.
// It is set via checkConnErrorWriter{w}, where bufw writes.
werr error
// r is bufr's read source. It's a wrapper around rwc that provides
// io.LimitedReader-style limiting (while reading request headers)
// and functionality to support CloseNotifier. See *connReader docs.
r *connReader
// bufr reads from r.
bufr *bufio.Reader
// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
bufw *bufio.Writer
// lastMethod is the method of the most recent request
// on this connection, if any.
lastMethod string
curReq atomic.Pointer[response] // (which has a Request in it)
curState atomic.Uint64 // packed (unixtime<<8|uint8(ConnState))
// mu guards hijackedv
mu sync.Mutex
// hijackedv is whether this connection has been hijacked
// by a Handler with the Hijacker interface.
// It is guarded by mu.
hijackedv bool
}
接下来看看 serverHandler{c.server}.ServeHTTP(w, w.req) 具体的做了什么
- 第一行获取 main 函数中创建的 server ,将这个server 的 handler 对象,也就是 router 路由引擎单独拿出来
- 最后一行,执行 router 路由引擎中的
ServeHTTP(rw, req)函数
// main()
// router := routers.NewRouter()
// s := &http.Server{
// Addr: ":" + global.ServerSetting.HttpPort,
// Handler: router,
// ReadTimeout: global.ServerSetting.ReadTimeout,
// WriteTimeout: global.ServerSetting.WriteTimeout,
// MaxHeaderBytes: 1 << 20,
// }
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
// 获取 main 函数中创建的 server ,将这个server 的 handler 对象,也就是 router 路由引擎单独拿出来
handler := sh.srv.Handler
if handler == nil {
handler = DefaultServeMux
}
if !sh.srv.DisableGeneralOptionsHandler && req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
if req.URL != nil && strings.Contains(req.URL.RawQuery, ";") {
var allowQuerySemicolonsInUse atomic.Bool
req = req.WithContext(context.WithValue(req.Context(), silenceSemWarnContextKey, func() {
allowQuerySemicolonsInUse.Store(true)
}))
defer func() {
if !allowQuerySemicolonsInUse.Load() {
sh.srv.logf("http: URL query contains semicolon, which is no longer a supported separator; parts of the query may be stripped when parsed; see golang.org/issue/25192")
}
}()
}
handler.ServeHTTP(rw, req)
}
接着我们砖到 router 路由引擎对象 的 engin 类, 我们接着看func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) 做了什么
- 从 Context 内存池中获取一快内存
- 把 req 和 responseWriter 塞到 Context 里面
- 调用
***engine.handleHTTPRequest(c)*** 函数,这个函数会根据 http 请求头里的 method 和 path在 radix tree (前缀树,一个method 代表一个树的跟节点)中找到对应的节点 node, 节点 node 上挂载着用户在注册路由时同时注册进来的处理方法 handler - 执行当前请求的路由上注册的对应handler,是一个回调函数,由用户提前注册好
- 用户注册的业务逻辑执行完成后,会向responseWrite 缓冲区写入数据,响应返回给客户端
type Engine struct {
RouterGroup
// Enables automatic redirection if the current route can't be matched but a
// handler for the path with (without) the trailing slash exists.
// For example if /foo/ is requested but a route only exists for /foo, the
// client is redirected to /foo with http status code 301 for GET requests
// and 307 for all other request methods.
RedirectTrailingSlash bool
// If enabled, the router tries to fix the current request path, if no
// handle is registered for it.
// First superfluous path elements like ../ or // are removed.
// Afterwards the router does a case-insensitive lookup of the cleaned path.
// If a handle can be found for this route, the router makes a redirection
// to the corrected path with status code 301 for GET requests and 307 for
// all other request methods.
// For example /FOO and /..//Foo could be redirected to /foo.
// RedirectTrailingSlash is independent of this option.
RedirectFixedPath bool
// If enabled, the router checks if another method is allowed for the
// current route, if the current request can not be routed.
// If this is the case, the request is answered with 'Method Not Allowed'
// and HTTP status code 405.
// If no other Method is allowed, the request is delegated to the NotFound
// handler.
HandleMethodNotAllowed bool
ForwardedByClientIP bool
// #726 #755 If enabled, it will thrust some headers starting with
// 'X-AppEngine...' for better integration with that PaaS.
AppEngine bool
// If enabled, the url.RawPath will be used to find parameters.
UseRawPath bool
// If true, the path value will be unescaped.
// If UseRawPath is false (by default), the UnescapePathValues effectively is true,
// as url.Path gonna be used, which is already unescaped.
UnescapePathValues bool
// Value of 'maxMemory' param that is given to http.Request's ParseMultipartForm
// method call.
MaxMultipartMemory int64
// RemoveExtraSlash a parameter can be parsed from the URL even with extra slashes.
// See the PR #1817 and issue #1644
RemoveExtraSlash bool
delims render.Delims
secureJsonPrefix string
HTMLRender render.HTMLRender
FuncMap template.FuncMap
allNoRoute HandlersChain
allNoMethod HandlersChain
noRoute HandlersChain
noMethod HandlersChain
pool sync.Pool
trees methodTrees // 前缀树
}
// ServeHTTP conforms to the http.Handler interface.
func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) {
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset()
engine.handleHTTPRequest(c)
engine.pool.Put(c)
}
func (engine *Engine) handleHTTPRequest(c *Context) {
httpMethod := c.Request.Method
rPath := c.Request.URL.Path
unescape := false
if engine.UseRawPath && len(c.Request.URL.RawPath) > 0 {
rPath = c.Request.URL.RawPath
unescape = engine.UnescapePathValues
}
if engine.RemoveExtraSlash {
rPath = cleanPath(rPath)
}
// Find root of the tree for the given HTTP method
t := engine.trees
for i, tl := 0, len(t); i < tl; i++ {
if t[i].method != httpMethod {
continue
}
root := t[i].root
// Find route in tree
value := root.getValue(rPath, c.Params, unescape)
if value.handlers != nil {
c.handlers = value.handlers
c.Params = value.params
c.fullPath = value.fullPath
c.Next() // 执行节点上用户注册的的路由的处理函数 handler
c.writermem.WriteHeaderNow()
return
}
if httpMethod != "CONNECT" && rPath != "/" {
if value.tsr && engine.RedirectTrailingSlash {
redirectTrailingSlash(c)
return
}
if engine.RedirectFixedPath && redirectFixedPath(c, root, engine.RedirectFixedPath) {
return
}
}
break
}
if engine.HandleMethodNotAllowed {
for _, tree := range engine.trees {
if tree.method == httpMethod {
continue
}
if value := tree.root.getValue(rPath, nil, unescape); value.handlers != nil {
c.handlers = engine.allNoMethod
serveError(c, http.StatusMethodNotAllowed, default405Body)
return
}
}
}
c.handlers = engine.allNoRoute
serveError(c, http.StatusNotFound, default404Body)
}
// 迭代器,依次执行 handler
func (c *Context) Next() {
c.index++
for c.index < int8(len(c.handlers)) {
c.handlers[c.index](c)
c.index++
}
}
顺带看下前缀树
// 树的根节点
type methodTree struct {
method string
root *node
}
// 树的节点
type nodeValue struct {
handlers HandlersChain
params Params
tsr bool
fullPath string
}